Energy–entropy competition and the effectiveness of stochastic gradient descent in machine learning
نویسندگان
چکیده
منابع مشابه
Energy-entropy competition and the effectiveness of stochastic gradient descent in machine learning
Finding parameters that minimise a loss function is at the core of many machine learning methods. The Stochastic Gradient Descent algorithm is widely used and delivers state of the art results for many problems. Nonetheless, Stochastic Gradient Descent typically cannot find the global minimum, thus its empirical effectiveness is hitherto mysterious. We derive a correspondence between parameter ...
متن کاملlearners’ attitudes toward the effectiveness of mobile-assisted language learning (mall) in vocabulary acquisition in the iranian efl context: the case of word lists, audiobooks and dictionary use
رشد انفجاری تکنولوژی فرصت های آموزشی مهیج و جدیدی را پیش روی فراگیران و آموزش دهندگان گذاشته است. امروزه معلمان برای اینکه در امر آموزش زبان بروز باشند باید روش هایی را اتخاذ نمایند که درآن ها از تکنولوژی جهت کمک در یادگیری زبان دوم و چندم استفاده شده باشد. با در نظر گرفتن تحولاتی که رشته ی آموزش زبان در حال رخ دادن است هم اکنون زمان مناسبی برای ارزشیابی نگرش های موجود نسبت به تکنولوژی های جدید...
15 صفحه اولOnline Learning, Stability, and Stochastic Gradient Descent
In batch learning, stability together with existence and uniqueness of the solution corresponds to well-posedness of Empirical Risk Minimization (ERM) methods; recently, it was proved that CVloo stability is necessary and sufficient for generalization and consistency of ERM ([9]). In this note, we introduce CVon stability, which plays a similar role in online learning. We show that stochastic g...
متن کاملLearning Rate Adaptation in Stochastic Gradient Descent
The efficient supervised training of artificial neural networks is commonly viewed as the minimization of an error function that depends on the weights of the network. This perspective gives some advantage to the development of effective training algorithms, because the problem of minimizing a function is well known in the field of numerical analysis. Typically, deterministic minimization metho...
متن کاملVariational Stochastic Gradient Descent
In Bayesian approach to probabilistic modeling of data we select a model for probabilities of data that depends on a continuous vector of parameters. For a given data set Bayesian theorem gives a probability distribution of the model parameters. Then the inference of outcomes and probabilities of new data could be found by averaging over the parameter distribution of the model, which is an intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Physics
سال: 2018
ISSN: 0026-8976,1362-3028
DOI: 10.1080/00268976.2018.1483535